publications

Complete list of publications (click here)

Selected work

Nature Communications, 2024

We have developed dipeptide coacervates with enhanced stability and hydrophobic properties that enable the encapsulation of transition metal-based catalysts. These artificial organelles can be incorporated into cells to drive non-biological chemical reactions, offering new opportunities for biomimetic materials and applications in catalysis and synthetic biology.

 

ACS Applied Materials & Interfaces, 2023

We have developed a microfluidics-based approach to fabricate adaptive microreactors with a coacervate-in-vesicle architecture. By incorporating pH-responsive coacervates, we have achieved precise control over the spatial arrangement of enzymatic reactions.

ChemSystemsChem, 2023

This brief review highlights the advances in droplet-based microfluidics (DBM) as a central tool for fabricating cell-like systems with multi-compartment structures inspired by biological cell architectures and functions.

Nanoscale, 2023,15, 2561-2566

 

This work presents the creation of caged-coacervates enclosed by a semipermeable silica nanocapsule shell, which improves colloidal stability and facilitates regulated molecular transport, enabling the assembly of biomimetic microreactors inspired by living cells.

Angewandte Chemie Int. Ed., 2022, 61, e202207998

 

This work introduces a method for manipulating the membrane of giant polymersomes using a temperature-responsive polymer, demonstrating that upon temperature changes, deformation, phase separation, and occasional division of synthetic cells can be observed, providing valuable insights into cellular behavior and dynamics relevant to cellular division and fusion processes.

Angewandte Chemie Int. Ed., 2022, 61, e202205266

 

This work introduces giant polymersomes equipped with light-responsive permeability modulators, allowing control of hydrophilic molecule transport across the polymer membrane to create functional cell-like systems, including a light-activated enzymatic micro-reactor and a coacervate-in-polymersome system mimicking biological condensates’ formation in cells.

Angewandte Chemie Int. Ed., 2022, 61, e202113784

 

This work demonstrates the creation of robust synthetic organelles using an enzyme co-compartmentalization strategy with silica nanoreactors, allowing for efficient regulation of cascade reactions, kinetics of sequential reactions, and the formation of multi-compartmentalized microreactors within giant polymer vesicles.

Publication list

30. T. Ivanov, S. Cao, N. Bohra, M. de Souza Melchiors, L. Caire da Silva*, and K. Landfester*. “Polymeric Microreactors with pH-Controlled Spatial Localization of Cascade Reactions”, ACS Applied Materials & Interfaces, Online Version (2023). (link)

 

29. T. Ivanov, S. Cao, T. P. Doan-Nguyen, H. B. Madalosso, L. Caire da Silva*, and K. Landfester*. “Assembly of Multi-Compartment Cell Mimics by Droplet-Based Microfluidics”, ChemSystemsChem, Online Version, e202300034 (2023). (link)

 

28. J. P. Gonçalves, D. Promlok, T. Ivanov, S. Tao, T. Rheinberger, S-M. Jo, Y. Yu, R. Graf, M. Wagner, D.  Crespy, F. R. Wurm, L.  Caire da Silva, S.  Jiang, and K. Landfester, “Confining the Sol-Gel Reaction at the Water/Oil Interface: Creating Compartmentalized Enzymatic Nano-Organelles for Artificial Cells”, Angewandte Chemie International Edition, 62, e202216966 (2023).

 

27. S. Cao, T. Ivanov, M. de Souza Melchiors, K. Landfester, and L. Caire da Silva*, “Controlled Membrane Transport in Polymeric Biomimetic Nanoreactors”, ChemBioChem, 24, e202200718 (2023).

 

26. A. Jobdeedamrong, S. Cao, D. Crespy, K. Landfester*, and L. Caire da Silva*, “Assembly of Biomimetic Microreactors using Caged-Coacervate Droplets”, Nanoscale, 15, 2561-2566 (2023).

 

25. M. de Souza Melchiors, T. Ivanov, I. Harley, C. Sayer, P. H. H., Araújo, C. Ferguson*, L. Caire da Silva*, and K. Landfester*, “Membrane Manipulation of Giant Unilamellar Polymer Vesicles with a Temperature-Responsive Polymer”, Angewandte Chemie, e202207998 (2022).

 

24. S. Cao, L. Caire da Silva*, and K. Landfester*, “Light-Activated Membrane Transport in Polymeric Cell-Mimics”, Angewandte Chemie, 61, e202205266 (2022).

 

23. S. Jiangs§, L. Caire da Silva§, T. Ivanov, M. Mottola, and K. Landfester, “Synthetic Silica Nano-Organelles for Regulation of Cascade Reactions in Multi-Compartmentalized Systems”, Angewandte Chemie, 61, 6, e202113784 (2022).

 

22. C. Guindani, L. Caire da Silva*, S. Cao, T. Ivanov, and K. Landfester*, “Synthetic Cells: From Simple Bio-Inspired Modules to Sophisticated Integrated Systems”, Angewandte Chemie, 61, 16, e202110855 (2022).

 

21. M. Houbrechts, L. Caire da Silva*, A. Ethirajan, and K. Landfester*, “Formation of Giant Polymer Vesicles by Simple Double Emulsification Using Block Copolymers as the Sole Surfactant”, Soft Matter, 17, 4942 (2021).

* shared corresponding author, § – shared first author

 

As postdoctoral researcher:

 

20. L. Caire da Silva, S. Cao, and K. Landfester, “Bursting and Reassembly of Giant Double Emulsion Drops Form Polymer Vesicles”, ACS Macro Letters, 10, 401 (2021).

 

19. L. Caire da Silva, E. Rideau, and K. Landfester, “Self-Assembly of Giant Polymer Vesicles by Light-Assisted Solid Hydration”, Macromolecular Rapid Communications, 40 (9), 1900027 (2019).

 

18. I. Ivanov, R. B. Lira, T.‐Y. Dora Tang, T. Franzmann, A. Klosin, L. Caire da Silva, A. Hyman, K. Landfester, R. Lipowsky, K. Sundmacher, and R. Dimova, “Directed Growth of Biomimetic Microcompartments”, Advanced Biosystems, 3, 1800314 (2019).

 

17. L. Otrin, C. Kleineberg, L. Caire da Silva, K. Landfester, I. Ivanov, M. Wang, C. Bednarz, K. Sundmacher, and T. Vidakovic-Koch, “Artificial Organelles for Energy Regeneration”, Advanced Biosystems, 3, 1800323 (2019).

 

16. B. Ma§, L. Caire da Silva§, S.-M. Jo, F. R. Wurm, M. Bannwarth, K. A. I. Zhang, K. Sundmacher, and K. Landfester, “Polymer-based Module for NAD+ Regeneration with Visible Light”, ChemBioChem, 20, 2593 (2019).

 

15. L. Yang, L. Caire da Silva, H. Thérien-Aubin, M. Bannwarth, and K. Landfester, “A Reversible Proton Generator with On/Off Thermoswitch”, Macromolecular Rapid Communications, 40 (6), 1800713 (2019).

 

14. W. Huang, J. Byun, I. Roerich, C. Ramanan, P. Blom, H. Lu, D. Wang, L. Caire da Silva, R. Li, L. Wang, K. Landfester, and K. A. I. Zhang, “Asymmetric Covalent Triazine Framework for Enhanced Visible Light Photoredox Catalysis via Energy Transfer Cascade”, Angewandte Chemie Int Edition, 57, 8316 (2018).

 

13. C. Ayed, L. Caire da Silva, D. Wang, and K. A. I. Zhang, “Designing Conjugated Microporous Polymers for Visible Light-Promoted Photocatalytic Carbon-Carbon Double Bond Cleavage in Aqueous Medium”, Journal of Materials Chemistry A, 6, 22145 (2018).

 

12. M. Hu, S. Peil, Y. Xing, D. Döhler, L. Caire da Silva, W. H. Binder, M. Kappl, and M. B. Bannwarth, “Monitoring Crack Appearance and Healing in Coatings with Damage Self-Reporting Nanocapsules”, Materials Horizons, 5, 51 (2018).

 

11. C. Ayed, W. Huang, R. Li, L. Caire da Silva, D. Wang, O. Suraeva, W. Najjar, and K. A. I. Zhang, “Conjugated Microporous Polymers with Immobilized TiO2 Nanoparticles for Enhanced Visible Light Photocatalysis”, Artificial Photosynthesis, Part. Part. Syst. Charact., 35, 1700234 (2017).

 

10. L. Caire da Silva, G. Rojas, M. D. Schulz and K. B. Wagener, “Acyclic diene metathesis polymerization: History, methods and applications”, Progress in Polymer Science, 69, 79 (2017).

 

9. H. Li, L. Caire da Silva, M.D. Schulz, R. Giovanni, and K.B. Wagener, “A Review of How to do an ADMET Reaction”, Polymer International, 66, 7 (2017).

 

As graduate student (University of Florida):

 

8. L. Caire da Silva and K. B. Wagener, “Synthesis and Thermal Characterization of Precision Poly(p-cyclohexylene alkylenes) via Acyclic Diene Metathesis Polycondensation”, Macromolecular Chemistry and Physics, 217, 850 (2016).

 

7. L. Caire da Silva, C. R. Bowers, R. Graf and K. B. Wagener, “Molecular Motion of the Junction Points in Model Networks Prepared by Acyclic Triene Metathesis”, Macromolecular Rapid Communications, 37, 527 (2016).

 

6. L. Caire da Silva, R. Graf, R. C. Bowers and K. B. Wagener, “Branch-Induced Heterogeneous Chain Motion in Precision Polyolefins”, Macromolecules, 48, 8858 (2015).

 

5. N. Sauty, L. Caire da Silva, R. Graf, C. Gallagher and K. B. Wagener, “Unveiling the Hyperbolic Thermal Behavior of Poly(p-phenylene alkylene)s”, Polymer Chemistry, 6, 6073 (2015).

 

4. L. Caire da Silva, N. F. Sauty, D. L. Thompson, T. W. Gaines, M. D. Schulz, and K. B. Wagener, “Metathesis Polymerization Including ADMET”, Encyclopedia of Polymeric Nanomaterials, pp 1-6 (2015).

 

3. N. Sauty, L. Caire da Silva, M. Schulz, C. Few and K. B. Wagener, “Acyclic diene metathesis polymerization and precision polymers”, Applied Petrochemical Research, 4, 225 (2014).

 

2. N. Sauty, H. Li, L. Caire da Silva, and K. B. Wagener, “Large Scale Preparation of Long Chain ADMET Synthons”, Synthetic Communications, 44(16), 2409 (2014).

 

As undergrad student (State University of Campinas):

 

1. S. Jorge, A. Petruk, E. Kimura, D. Oliveira, L. Caire, C. Suemasu, P. Silveira, D. Albulquerque, F. Costa, M. Skaf, L. Martinez, and M. Sonat, “Hb-S-Sao Paulo: A new sickling hemoglobin with stable polymers and decreased oxygen affinity”, Archives of Biochemistry and Biophysics, 519(1), 23 (2012).